LSA Powering Up for 2016-2017
Virtual Learning Sessions

October 7 & 18, 2016
Agenda

- Introduction to LSA
- Priorities for 2016-2017
- Resources and Supports
The LSA project is a larger and more sustained development initiative for existing school leaders than any other such initiative of which I am aware anywhere else (in the world). It is also among the most rigorous examples available anywhere of a leadership development initiative being “evidence-informed”. As well, the leadership provided to the project is a textbook case of how to successfully sustain and grow an educational initiative over a long period of time; this leadership provides a remarkable example of how powerful “middle leadership” can be (the principal associations) with suitable support. Finally, the LSA project is likely the most thoroughly evaluated initiative in the province and arguably the most thoroughly evaluated of any province-wide initiative ever attempted in Ontario.

(Leithwood, Synopsis of LSA’s Evaluation, 2015)
Partnership and Leadership

- Association des directions et des directions adjointes des écoles franco-ontariennes (ADFO)
- The Catholic Principals’ Council | Ontario (CPCO)
- The Ontario Principals’ Council (OPC)
- In partnership with and funded by the Student Achievement Division, Ministry of Education
- Supported by Learnography (LGY)
ADFO, CPCO and OPC Participation

Number of Districts

Year 1 2005-2006

Year 12 2016-2017
Leading Student Achievement (LSA): Networks for Learning

Multi-Level Leadership
Layers of Networks

<table>
<thead>
<tr>
<th>SCHOOL</th>
<th>DISTRICT</th>
<th>PROVINCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Learning Communities
Principals and teachers collaborate in teams to improve instructional practice and school conditions that impact on student learning.</td>
<td>Leadership Networks/PLTs
Principals work in teams and learning networks across districts to increase their capacity in leadership for learning, impacting on teacher practice and school conditions that lead to improved student learning.</td>
<td>LSA Steering Team
The LSA Steering Team provides support to principals and system leaders through a variety of professional learning opportunities and resources.</td>
</tr>
</tbody>
</table>
LSA Theory of Action

- **Rational Path**
 - Academic Emphasis
 - Disciplinary Climate
 - Focused Instruction
 - Collaborative Inquiry Processes
 - Knowledge Building

- **Emotions Path**
 - Efficacy
 - Trust

- **Organizational Path**
 - Principal Learning Teams
 - Professional Learning Communities
 - Instructional Time
 - Interactive Technologies

- **Family Path**
 - Family Educational Culture

Leithwood, 2015
LSA Priorities for 2016-2017

The LSA Theory of Action supports the five LSA priorities:

- Leadership Networks/Principal Learning Teams (PLTs)
- Professional Learning Communities (PLCs)
- Collaborative Inquiry (CI)
- Knowledge Building (KB) / Knowledge Forum (KF)
- Renewed Mathematics Strategy (RMS)
Leadership Networks/Principal Learning Teams

PLTs have always been very highly regarded by LSA’s membership, consistently rating their usefulness higher than almost any other LSA component.

(Leithwood, Characteristics of Effective Leadership Networks, 2016)
Professional Learning Communities

Learning leadership develops, grows, and is sustained through participation in professional learning communities and networks…Networked communities of practice must together add up to an intertwined, interconnected infrastructure at the system level.

(OECD, 21st Century Learning Leadership)
Collaborative Inquiry

- Collaborative processes and structures are associated, in a considerable body of research, with good things happening in schools.

- Both principals and teachers in Ontario express strong preferences for working collaboratively in the belief that the outcome of such collaboration will be of long-term value to their students.

(Ken Leithwood)
Knowledge Building/ Knowledge Forum

- Knowledge Building, is a theoretically rich and highly developed approach to instruction aimed at developing students’ deep understanding of big ideas and complex concepts.

- Originating in the work of Marlene Scardamalia and Carl Bereiter, this approach to instruction can be undertaken without special technology but comes with a quite sophisticated software program, Knowledge Forum, which substantially enhances teachers’ efforts to help students build knowledge in a shared, social space.

(Ken Leithwood)
Ontario’s Renewed Mathematics Strategy

The goal in Ontario is that 75 percent of all elementary students achieve a level of 3 or higher in provincial assessment in reading, writing and mathematics. To meet this, the ministry is committed to continuing to work with teachers, principals, supervisory officers, directors of education and their professional associations to identify and share effective and innovative learning, teaching and leading practices.
KB Resources and Supports

- Karen Dobbie, Student Achievement Officer
 - karen.dobbie@ontario.ca

- Monica Resendes, Knowledge Building Consultant
 - monicaresendes@gmail.com
KNOWLEDGE BUILDING

Giving learners collective responsibility for idea improvement.
Knowledge Building Gallery
Teaching for deep understanding and community knowledge Creation
A collection of foundational KB practices and teacher and leader innovations

- Getting started with Knowledge Building in the Classroom
- Strategies for Sustaining Idea Improvement
- Exploring Knowledge Building in Mathematics
- Knowledge Building Technologies: Knowledge Forum
- Assessment and Evaluation
- Teacher and Leader Innovations and Case Studies
KNOWLEDGE BUILDING: THE THEORY IN A NUTSHELL

• Knowledge Building (KB) theory and practice is inspired by looking at how knowledge creating organizations actually operate and how they create new knowledge out in the world (knowledge creating groups can be scientific think tanks, commercial design labs, networks of software engineers, artist collectives, a community of Civil War historians, etc.).

• The primary job of knowledge workers is to work creatively with ideas and produce knowledge artifacts that advance knowledge for the common good. The knowledge artifacts they produce can include anything from designs, to models, problem-solutions, theories, improved products, better procedures, advanced technologies, and so on.

• Knowledge creating organizations have what they call collective intelligence—a type of knowledge that can only be described at the group level. The collective work drives innovation.

• In successful knowledge-creating organizations, innovation is not only the driving force, but it is “part-and-parcel of the ordinary, if not routine” (Drucker, 1985).

• Capacities for creative knowledge work are in high demand in the 21st century. More and more, the social, economic and political well-being of modern societies will rely on the capacity of their citizens to be able to innovate and work creatively with knowledge across all fields (OECD, 2008).

• As stated in the Ontario Ministry of Education’s document Growing Success, “Education directly influences students’ life chances — and life outcomes. Today’s global, knowledge-based economy makes the ongoing work in our schools critical to our students’ success in life and to Ontario’s economic future. As an agent of change and social cohesion, our education system supports and reflects the democratic values of fairness, equity, and respect for all. The schools we create today will shape the society that we and our children share tomorrow (2009, p. 6).

• There is a strong moral imperative for immersing students in authentic knowledge work from the beginnings of school. It is a long-standing reality that the level of knowledge students come to school with corresponds generally to the level that they leave school with. Education has not succeeded in closing this gap. Growing students’ capacity for knowledge work seeks to even the playing field and help to set all students up for success.

• The capacities for creative knowledge work also include social and collaborative skills that are built from a strong sense of empathy, open-mindedness and healthy communication habits; this in turn helps students develop themselves socially and emotionally as well as academically.
The Most Important Elements of a KB Classroom

- Make ideas visible!
- Everyone is a valid contributor
- Grounded in 12 KB principles
- Invite parents to contribute!
- Extend beyond the walls of the classroom
- Culture of safety and support
- Frequent group discourse
- Modeling of community norms
- Planning is adaptive, flexible, responsive
- Teacher believes in students' capacity for knowledge creation
- See failure as a normal part of the process
- Ideas at the center!
- Ideas at the center!
- Classroom setup promotes collaboration
- Supports for KB discourse
- Idea Diversity
- Growth Mindset
- Students take charge at the highest levels
- Collective processes - dialogue, reflection, feedback
Knowledge Building Scaffolds

THE PRACTICE: Get started with KB discourse by introducing the “Knowledge Building Scaffolds” to students. The “KB Scaffolds” represent the kind of talk that helps students actively develop theories, to go beyond opinion and information-sharing to growing ideas, and constructing new knowledge. The scaffolds represented below are typically referred to as the KB “Theory-Building” Scaffolds. These scaffolds represent very powerful “epistemic markers”—essentially, ways of thinking and knowing—that can help support student engagement in expert-like processes and behaviours, and help grow a culture of knowledge creation within a classroom. Post them around the classroom and encourage students to use these phrases during group discussions, such as KB Circles. Soon they will become second nature.

I wonder...
I still need to understand...
My theory is...
Building onto this idea...
New information + source...
This theory does not explain...
Putting our knowledge together...
An improved idea...
We need evidence for...
We need an experiment to...
A promising idea...
Our next steps...
Another way of looking at it...
An example...
An analogy / comparison...
KNOWLEDGE BUILDING LEADERSHIP SCAFFOLDS

I/we still need to understand...

My/our theory is...

Building onto this idea...

New information + source...

This theory does not explain...

Putting our knowledge together...

Here is my/our improved idea...

We need evidence for...

A promising idea...

Our next steps...

I/we are going to investigate...

I/we encourage

we need evidence for...

Are we headed in a promising direction?

Are we getting to the heart of the problem?

Another way of looking at it...

An example

An analogy / comparison

My/our previous experience has led me/us to believe... I/we now believe...

As a co-learner...

Co-designing with my team, I/we have discovered...

As an instructional leader...

As I/we try my/our new practice...

I/we are frustrated/surprised/disappointed...

I/we share your concern...

How can we make this better?
Expanding the Topic: Talking and Thinking Like an Expert

How can we support students in engaging in expert-like habits of mind and practice? What pedagogical inventions can support this effort? The KB scaffolds are an example of a pedagogical innovation that are very effective in supporting students in thinking like an expert and engaging in high-level cognitive and creative knowledge processes. On the following page are a variety of scaffold examples inspired by KB research and related literature and teaching resources that explores how to help students think like an expert across domains (e.g., Denes & Case, 2006; Corey & Smith, 1993). The verbal stems represented in these scaffold sets are complementary to the KB Theory-Building Scaffolds on the previous page.

SCIENTIFIC THINKING

- My theory
- My hypothesis
- Evidence to support
- Evidence to disclaim
- Experimental evidence
- Experimental results:
 - Source of information
 - We need to evidence for
 - Experimental design:
 - We’re stuck:
 - My observations
 - We need to find out
 - Next steps

HISTORICAL THINKING

- Another perspective is
- This person/event/artifact is significant because
- Why we should care now
- A consequence of this event is
- A cause of this event is
- A motivating factor
- Important background information:
 - Evidence to support
 - Evidence to disclaim
 - What we need to find out
 - A similarity between then and now
 - A difference between then and now
 - Next steps

MATH

- Clarifying the problem
- What’s difficult
- Another strategy is
- How to proceed
- An answer
- There’s more to it
- I wonder
- In our own words

Primary Grade Set

THEORY BUILDING

- I wonder
- My theory
- New information + source
- Our improved idea
KB Walls

Learn to thrive in complexity! KB Walls bring idea diversity to life and make student thinking and ideas visible. The visual layout helps students to make connections between ideas, and explicitly shows how their ideas are evolving. The KB wall examples highlighted in this section were created by Elaine Weaver and Allison Kemper, junior and intermediate teachers from the Hamilton Wentworth District School Board (HWDSB), and their students.

Figure X. In the KB Wall shown above, Allison’s Gr. 7 students were exploring the big question “What inspires someone to take a stand?” Students were posing theories, engaging with relevant articles and building onto each other’s ideas. (Check out Allison’s case study on page XXX to learn more about the process she uses to build her KB walls with her students.)

Figure X. A KB Wall exploring big ideas in Biodiversity
In this way allowed the community to see at a glance which theories showed more promise and were worth spending more time on. Yarn was used to indicate connections between ideas and build-on contributions.

3. The class continued to improve their theories and ideas, using blue stickies to pose new questions that were arising and purple stickies to make new connections between ideas. The yellow "rise above" arrows at the top of the web of stickie notes were added after initial theories were posed, investigated and interrogated. A "rise-above" idea is not about selecting between opposing ideas or creating a compromised idea that gives up some of the power of those that play into it. Rather, rise-above ideas are about "creating a new idea that preserves the value of the competing ideas while 'rising above' their incompatibilities" ([Scardamalia, 2004, p. 7]. A rise-above idea is most powerful when it is not simply a summary or distillation of generated ideas, but a genuinely new idea that the community recognizes as an advance on previous knowledge. On this KB Wall, these yellow arrows served as visual reminders that encouraged students to take the next step in idea improvement by making connections and integrated ideas to get to new insights, more sophisticated ideas and higher and higher level understandings.

For example, students move from their initial theories such as "black holes created the universe" or "the universe was started by the Big Bang" to higher level conceptualizations and more elaborate theories. A "rise-above" contribution might look something like this: "The creation of the universe is more complicated than what we've talked about so far. The Big Bang might have happened and is important in understanding the beginning of the universe. But, we also need to understand a bit of Einstein's theory of relativity as well as something called Quantum theory to understand how an explosion—or what scientists call a "singularity"—might have happened in the first place. I got some of my information from a famous scientist named Stephen Hawking." While this entry does not necessarily represent a conceptual breakthrough, it nevertheless attempts to integrate new ideas to existing theories in the effort to deepen understanding.
Knowledge Building in math: How do we help students to think like mathematicians?

What does Knowledge Building in school mathematics look like? How can we help support the shift from “learning math” to students’ “thinking like mathematicians”? Like all Knowledge Building, in math the approach is collaborative and inclusive; it requires that students and teachers work collaboratively on achievement goals, and that students take high-level responsibility for goals and outcomes, and especially for idea improvement.

Below are three typical scenarios of how students might encounter math in the classroom. In the pages that follow, we elaborate on what a Knowledge Building approach to each scenario would look like. Key practices and tools are highlighted, and teacherly moves that help to scaffold students’ thinking and learning are made explicit.

Math Learning Scenarios

- Math lessons focus on helping students understand and explain a mathematical concept they find puzzling—such as why multiplication by a fraction results in a smaller fraction or why a negative number times a negative number gives a positive number.

- Mathematics is engaged by tackling a real-world issue where numbers are crucial—e.g., the issue of habitat shrinkage and minimum habitat size for an endangered species.

- Students are asked to tackle an assigned math problem with an effort to make sense of the problem and draw conclusions from it (Bereiter, 2015).

 To note, the other two areas of application—explaining puzzling mathematical ideas and tackling real-world issues—are in closer accord with Knowledge Building principles (for instance, the principle of “real ideas, authentic problems”). Nevertheless, a main indicator of mathematical competence on evaluations is ability to solve and justify solutions of assigned problems, so this scenario deserves due consideration.

Whichever the focus, aligning math strategies with the Knowledge Building principles can help to support student engagement, confidence and achievement in math. For instance:

- **Real Ideas, Authentic Problems** would involve engaging students in problems involving math that spark their natural curiosity and help them both develop their understanding and form positive attitudes towards the subject (Colgan, 2014).

- **Improvable Ideas** would involve the notion that “ideas are improvable” calls for and helps to encourage a “growth mindset” (Dweck, 2006), which, when applied to the domain of math, can help boost learner confidence and development (Sirola, 2014).

- **Knowledge Building Discourse**: The importance of mathematical discourse—“math talk”—to achievement and engagement in the subject is well known (NCTM, 2000; National Research Council, 2001). In a Knowledge Building community, opportunities for members to engage in peer-to-peer knowledge building discourse are a priority.
Tools and Practices to Support Knowledge Building for Mathematics

KB tools and practices such as the KB Scaffolds, KB Circles, Knowledge Forum, and “Meta-Talk” discussions can be particularly useful for engaging students in meaningful math learning (see previous TBD pages of this resource). Below, we elaborate briefly on how the KB Scaffolds can be used for effective math learning.

Using Knowledge Building Scaffolds for Math

The KB Scaffolds are very effective in supporting students in thinking like an expert and engaging in high-level cognitive and creative knowledge processes. These scaffolds represent very powerful “epistemic markers”—essentially, ways of thinking and knowing—that can help support student engagement in expert-like processes and behaviours, and help grow a culture of knowledge creation within a classroom. Below is a set of KB Scaffolds that can be used to support deep thinking processes in math. These scaffolds can compliment Accountable Talk or math prompts that may already be in use in the classroom. As shown, the scaffolds support the Mathematical Processes that support effective learning in math, as outlined in the Ontario Curriculum document.

KB MATH SCAFFOLDS
- Clarifying the problem
- What’s difficult
- Another strategy is
- How to proceed
- An answer
- There’s more to it
- I wonder
- In our own words

MATHEMATICAL PROCESSES
- problem solving
- reasoning and proving
- reflecting
- selecting tools and computational strategies
- connecting
- representing
- communicating

Individually or with a colleague, think about what other scaffolds and discursive supports can help YOUR students engage in deep thinking processes in math.

MY MATH SCAFFOLDS

Approach 1: Scaffolding Collaborative Problem Solving

Currently, the main indicator of student achievement in mathematics is formalized evaluations and tests. In what follows, we devote some time to exploring what a KB approach to tackling an assigned math problem can look like.

Below is a sample set of KB math scaffolds. Under this is an example of the type of typical math problem that students may encounter on tests and evaluations. The student dialogue that follows illustrates how the scaffolds could help support mathematical discourse among students.

Select KB Math Scaffolds

- Clarifying the problem
- What’s difficult
- Another strategy is
- How to proceed
- An answer
- There’s more to it
- I wonder
- In our own words

Pattern A is created by repeating the 4 terms below in order.

```
Pattern A

<table>
<thead>
<tr>
<th>Term number</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
```

Pattern B is created by repeating the 3 terms below in order.

```
Pattern B

<table>
<thead>
<tr>
<th>Term number</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
```

Find a term in both patterns that is the same and has the same term number. Show your work.

The problem above that deals with parallel series calls for a single answer. However, it actually raises a number of issues that students could explore during collaborative discussion supported and guided by the scaffolds. These issues include things like:

1. Identifying what precisely is being asked. Students are likely to have different interpretations of the instructions, and elaborating the instruction in their own words will likely require some iterative process of composing, evaluating, and revising.

2. One of the figures in Pattern A does not appear in Pattern B and so it cannot be the answer. How do we make use of that knowledge?
Case Studies

Getting Knowledge Building Started in Mathematics

This case study describes Suzana Milinovich's grade 6/7 class in in Hamilton, Ontario. Her class consisted of 25 students, 16 males and 9 females. There were 5 children with Special Needs, 3 of which were working on an Individualized Education Plan with modified expectations in Mathematics. In Suzana's classroom, it was a significant challenge to ignite mathematical conversations between a diverse set of learners in order to advance an entire group's knowledge. Suzana decided to narrow in on setting the conditions for Knowledge Building discourse, that would lead to Democratizing Knowledge within the group. It was critical for students to understand that all learners in the classroom are relevant contributors to the group's learning, and have the opportunity to experience this.

KB Provocation:
The majority of students (88%) commenced the year with a negative attitude towards mathematics. 85% of the students felt that they exhibited no strengths in the entire subject area. Suzana identified this as her problem of practice and began to embark on a professional inquiry that would shift the attitude and learning of mathematics with these students.

Strategies for Sustaining Idea Improvement
With the understanding that student discourse is a highly effective principle in learning, Suzana looked for ways to encourage this in her Math class. She provided opportunities for students to learn how to effectively collaborate by having better conversations where all students could be accountable. During Mathematics, she introduced a daily Number Talk in which students, without the teacher, were encouraged to share their individual strategies when solving a number problem. When sharing, students were encouraged to explain their thinking as though they were convincing a room full of skeptics. As students discussed, Suzana simply sketched/recorded responses. Simultaneously, students were encouraged, as a listener, to become skeptics of their peers' strategy and respectfully question each other's ideas in order to build critical thinking skills. Suzana would pose questions such as:

- "Can someone re-phrase ___'s strategy?"
- "Can anyone build on ___'s theory?"
- "Would anyone like to ask ___ a question about their thinking?"
Creating a safe culture in which students would feel open to share and address problems with one another was something Suzana identified as a need for the group. She took some time to help students better understand the role of a skeptic that fostered citizenship skills in the learning environment. This included dressing up as a skeptic, posing for a photo shoot, creating dramatic role play scenarios, and reflecting on these during a KB circle.

Suzana provided a deep integration of Character Education in the learning community throughout all subject areas studied. The group of students became the leaders of the Positive School-Wide Culture Initiative, as they created #chooselinkWHB with student voice concurrently deepening their individual knowledge of specific traits: Respect, Optimism, Compassion, and Kindness. As the culture grew stronger, the number of student contributions to the group discussions increased. As accountable number talks and KB circles progressed, Suzana documented and summarized each valuable student contribution and posted them to a visual conversation bulletin board.

Move 2: Democratizing Knowledge
With anticipation of developing a collaborative learning space while transforming the environment, Suzana positioned a double table with whiteboard placed over top at the centre of the classroom. Students gathered around this central table to share, reflect, explore, and create during their KB circle. Suzana identified the success and significance of this new space, and encouraged the class to develop a name for it. The students coined the name T.O.G.A. (Table of Great Achievement). This marked a memorable moment during Math class, as the students felt a sense of connectedness as they giggled, and chanted its name alongside their teacher.

The students were encouraged to reflect on the success of their KB circles regularly. They clearly identified that everyone’s idea was needed and desired, and idea diversity occurred naturally during the discourse. Suzana also encouraged her students to reflect on the key scaffolds that they used and were comfortable with. These scaffolds were written down on coloured paper and pasted along the outside of T.O.G.A to create accessible visuals for students. Students became increasingly empowered to contribute to the shared goals of the Knowledge Building community. As students gained the confidence and ability to take pride in contributing to collaborations during a study of fractions, decimals and percentages, Suzana turned over the KB discussion entirely to the students. “It was a huge AHA moment for Suzanna, to finally release my responsibility during Knowledge Building circles. The students had arrived to a destination where they could freely explore big ideas and value each other’s strengths throughout the learning process.”

Move 3: Constructive Use of Authoritative Sources
Students were encouraged to use and evaluate source materials to further refine their ideas around decimal theories and principles. With the help of Dr. Monica Resende, Suzana provided an expert vocabulary word cloud that highlighted key mathematical terms extracted from authoritative sources, such as textbooks and Ontario Curriculum Guides. The students were also provided the opportunity to view a word cloud based on their own vocabulary that was generated on Knowledge Forum. This was a non-evaluative assessment for students to connect terms to principles, deepening their understanding of the mathematical
Knowledge Building Palette of Learning Opportunities

The following KB Palette provides a selection of learning opportunities to explore how the 12 principles of KB (the 12 habits of highly creative teams) can ground idea improvement in the culture of classrooms, school communities and professional learning networks.

- **Five Learning Opportunities**

- **Designed for school teams** (School Teams -Principal/ Vice Principal, Teachers), Senior Admin Teams and Instructional Leads

- **Each session will include a library of multimedia resources**, including videos, audio resources, articles, and online documents.
1. Leading with Knowledge Building

- Introduction to Knowledge Building (KB)
- Leadership Case Study: Exploring “Idea Improvement”
- Building New Knowledge in a KB Circle
- Next steps: How Do I Get KB Started?

Audience: Senior Admin Teams, Principals/ Vice-Principals, and Instructional Leaders
2. Getting KB started in Math

- Exploring the KB Principles
- KB Discourse
- KB Circles
- Knowledge Forum
- Case Studies (Print and Video Resources)

Audience: School Teams (P/ VP, Teachers) and Instructional Leads
3. Introduction to KB: How to Get Started in the Classroom

- What is Knowledge Building?

- Engaging with the KB Principles

- What does KB look like in the classroom?

- KB Scaffolds and KB Discourse

- KB Circles

- Assessment and Evaluation

Audience: School Teams (P/ VP, Teachers) and Instructional Leads
4. Building Knowledge on KB Forum

- Introduction to Knowledge Forum (KF)
- Exploring how to use KF
- Create an online community for your classroom!

Audience: School Teams (P/ VP, Teachers) and Instructional Leads
5. Growing a KB Community

- KB Principles at work in the classroom
- Sharing and Reflecting on the KB Journey
- The Power of Student Voice and Well Being
- Exploring next steps on the KB Journey

Audience: School Teams (P/ VP, Teachers) and Instructional Leads
PD ON THE RUN

"KNOWLEDGE BUILDERS” PODCAST SERIES

• You will explore Knowledge Building pedagogy and the 12 foundational principles that support innovation and knowledge creation in classrooms.

• Four part series

• Supported by listening guides and photo gallery
KNOWLEDGE BUILDING RESOURCES

learnteachlead.ca
UNDER CONSTRUCTION

- English Resources
- Knowledge Building
- Knowledge Forum

Accessing Knowledge Forum
- Please email Dr. Monica Resendes directly at monicaresendes@gmail.com if you would like access to the Knowledge Forum.

YouTube

Knowledge Forum 6 – Video Tutorial Series:
https://www.youtube.com/playlist?list=PLNdwjAw9WQK0keMvP4YBCQxmlizXAYqKnK
LSA Resources and Supports

- LSA District Facilitators
- Symposia
 - Wednesday, November 9, 2016: 8:30am-3:30pm
 - NO SYSTEM LEADER SESSION
 - April 2017 (TBA)
- Regional Sessions
 - Thunder Bay – Tuesday, November 22, 2016
 - Toronto – Friday, November 25, 2016
 - Belleville – Monday, November 28, 2016
 - London – Thursday, December 1, 2016
- OPC Speaker Series - Register Only 1 Person/District
 - Leading Collaborative Learning: Lyn Sharratt
 - Tuesday, November 8, 2016: 9:00am-3:00pm
LSA Resources and Supports

- Virtual Sessions
 - Knowledge Building Focus
 - Wednesday, December 14, 2016: 9:30am-11:30am
 - Math Focus
 - Wednesday, February 1, 2017: 9:30am-11:30am & 1:00pm-3:00pm
 - Topics TBD
 - Tuesday, March 7, 2017: 9:30am-11:30am & 1:00pm-3:00pm
 - Thursday, March 30, 2017: 9:30am-11:30am & 1:00pm-3:00pm

- Knowledge Building Resource
- LSA Website – http://lsaontario.org
Expectations of LSA Participants

- Work in collaboration with LSA participants focusing on LSA priorities by sharing experiences, knowledge and strategies that contribute to improved student achievement and well-being
- Develop and submit collaborative LSA Learning Plans and Year-End Reports
- Participate actively in LSA sponsored professional learning opportunities
- Support and contribute to the research component of the LSA project
Strong Districts

District leaders create structures to facilitate reciprocal forms of communication. These structures and norms should result in deeply interconnected networks of school and system leaders working together on achieving the system’s directions.

(Leithwood, Strong Districts, 2013)
Voices from the Field

Please reflect on the following questions, discuss and respond in the Chat Windows provided below.

- What further supports or resources do you need in order to facilitate the LSA work?
- What suggestions do you have for LSA future learning sessions?
- What are you still wondering about?
The LSA project has provided many opportunities for individual leaders to refine their leadership skills and knowledge. Through *Principal Learning Teams*, for example, the project has also helped to create and support networks of school and system leaders who, at their best, know more about how to do productive school improvement work than any of them does alone.

(Ken Leithwood)
Thank You!